ОГЭ, Математика. Геометрия: Задача №9460EF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №9460EF

Задача №225 из 1087
Условие задачи:

Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.

Решение задачи:

Рассмотрим треугольники ABC и BDE. Т.к. стороны правильного шестиугольника равны, то и CA=AB=BD=DE, /A=/D, т.к. углы правильного шестиугольника тоже равны. Следовательно, данные треугольники равны (по первому признаку равенства треугольников). Тогда BC=BE.
Углы /BCA=/CBA=/EBD=/BED (по свойству равнобедренного треугольника). Следовательно внутренние углы /С=/B=/E.
Данные выкладки справедливы для любой пары треугольников,следовательно все стороны внутреннего шестиугольника равны и все внутренние углы равны. Это означает, что внутренний шестиугольник - правильный (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №2657CA

Косинус острого угла A треугольника ABC равен . Найдите sinA.



Задача №225CE3

В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=48 и CH=2. Найдите cosB.



Задача №0BB4A3

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.



Задача №6E857B

Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.



Задача №04E377

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика