ОГЭ, Математика. Геометрия: Задача №9460EF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №9460EF

Задача №225 из 1087
Условие задачи:

Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.

Решение задачи:

Рассмотрим треугольники ABC и BDE. Т.к. стороны правильного шестиугольника равны, то и CA=AB=BD=DE, /A=/D, т.к. углы правильного шестиугольника тоже равны. Следовательно, данные треугольники равны (по первому признаку равенства треугольников). Тогда BC=BE.
Углы /BCA=/CBA=/EBD=/BED (по свойству равнобедренного треугольника). Следовательно внутренние углы /С=/B=/E.
Данные выкладки справедливы для любой пары треугольников,следовательно все стороны внутреннего шестиугольника равны и все внутренние углы равны. Это означает, что внутренний шестиугольник - правильный (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №46D9DF

В треугольнике ABC угол C равен 90°, AC=4, AB=5. Найдите sinB.



Задача №4E7064

Диагонали AC и BD прямоугольника ABCD пересекаются в точке O, BO=37, AB=56. Найдите AC.



Задача №2EB3D5

В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.



Задача №6B6C6E

Сторона равностороннего треугольника равна 23. Найдите радиус окружности, вписанной в этот треугольник.



Задача №DFC557

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика