В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что ВMKN — ромб.
По условию задачи AB=BC=CA (т.к. треугольник ABC -
равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MK -
средняя линия треугольника ABC. Следовательно, MK=BN и MK||BN (по
теореме о средней линии).
NK - тоже
средняя линия, равна BM и параллельна BM.
Получается, что MK=BN=BM=NK, т.е. BMNK -
ромб (по
свойству ромба).
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ параллельны.
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 32°. Найдите угол C этой трапеции. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, AC=12 , tgA=2√
Лестница соединяет точки A и B и состоит из 30 ступеней. Высота каждой ступени равна 13 см, а длина – 84 см. Найдите расстояние между точками A и B (в метрах).
Диагонали AC и BD прямоугольника ABCD пересекаются
в точке O, BO=37, AB=56. Найдите AC.
Комментарии: