Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
Рассмотрим каждое утверждение.
1) "
Биссектриса
равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию", это утверждение верно, по
свойству равнобедренного треугольника - такая
биссектриса является и медианой, и высотой, следовательно, она перпендикулярна основанию.
2) "Диагонали
ромба точкой пересечения делятся пополам", это утверждение верно, т.к. это утверждение является
свойством параллелограмма, а
ромб - это тоже
параллелограмм.
3) "Из двух хорд окружности больше та, середина которой находится дальше от центра окружности", это утверждение неверно. Диаметр - это наибольшая
хорда, следовательно, чем центр хорды ближе к центру окружности, тем хорда больше.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 8. Найдите площадь четырёхугольника ABMN.
Четырёхугольник ABCD со сторонами AB=25 и CD=16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠ AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=86, SQ=43.
Найдите площадь параллелограмма, изображённого на рисунке.
Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.
Комментарии: