В окружности с центром в точке О проведены диаметры AD и BC, угол
ABO равен 30°. Найдите величину угла ODC.
Вариант 1. Предложил пользователь Татьяна.
∠ABO=∠ABC=30°
∠ODC=∠ADC
Оба этих угла являются
вписанными и опираются на одну и ту же дугу, следовательно (по
второму свойству) они равны:
∠ABC=∠ADC=∠ODC=30°
Ответ: 30
Вариант 2.
Рассмотрим треугольник ABO. Этот треугольник
равнобедренный, т.к. ОA и ОB - радиусы, поэтому они равны.
По
свойству равнобедренного треугольника /OAB=/OBA.
Рассмотрим треугольники АОВ и COD. /DOC=/AOB, т.к. они
вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по
первому признаку). Поэтому /OBA=/OAB=/ODC=/OCD=30°
Ответ: /ODC=30°.
Поделитесь решением
Присоединяйтесь к нам...
Боковые стороны AB и CD трапеции ABCD равны соответственно 40 и 41, а основание BC равно 16. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Медиана равностороннего треугольника равна 9√
В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=84 и BC=BM. Найдите AH.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности
в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
Комментарии:
(2014-11-29 23:20:48) Администратор: Татьяна, да, Вы совершенно правы. Я добавлю Ваш вариант решения на сайт.
(2014-11-29 23:09:15) Татьяна: А нельзя ли эту задачу решить проще?Ведь угол ОДС и АВО - вписанные и опирающиеся на одну дугу. Следовательно, они равны, поэтому угол ОДС=30 градусов.