В окружности с центром в точке О проведены диаметры AD и BC, угол
ABO равен 30°. Найдите величину угла ODC.
Вариант 1. Предложил пользователь Татьяна.
∠ABO=∠ABC=30°
∠ODC=∠ADC
Оба этих угла являются
вписанными и опираются на одну и ту же дугу, следовательно (по
второму свойству) они равны:
∠ABC=∠ADC=∠ODC=30°
Ответ: 30
Вариант 2.
Рассмотрим треугольник ABO. Этот треугольник
равнобедренный, т.к. ОA и ОB - радиусы, поэтому они равны.
По
свойству равнобедренного треугольника /OAB=/OBA.
Рассмотрим треугольники АОВ и COD. /DOC=/AOB, т.к. они
вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по
первому признаку). Поэтому /OBA=/OAB=/ODC=/OCD=30°
Ответ: /ODC=30°.
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=71° и ∠OAB=39°. Найдите угол BCO. Ответ дайте в градусах.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:4, KM=18.
Стороны AC, AB, BC треугольника ABC равны 2√
Один из углов параллелограмма равен 111°. Найдите меньший угол этого параллелограмма. Ответ дайте
в градусах.
Комментарии:
(2014-11-29 23:20:48) Администратор: Татьяна, да, Вы совершенно правы. Я добавлю Ваш вариант решения на сайт.
(2014-11-29 23:09:15) Татьяна: А нельзя ли эту задачу решить проще?Ведь угол ОДС и АВО - вписанные и опирающиеся на одну дугу. Следовательно, они равны, поэтому угол ОДС=30 градусов.