Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.
По свойству
равнобедренной трапеции - углы при основании равны.
Тогда /ADC=30°+45°=75°.
Сумма углов четырехугольника равна 360°, тогда получаем, что:
360°=75°+75°+/DCB+/CBA,
/DCB+/CBA=360°-75°-75°=210°, а учитывая, что /DCB=/CBA (по тому
свойству равнобедренной трапеции), получаем /DCB=/CBA=210°/2=105°, эти углы и есть бОльшие в трапеции
Ответ: 105
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=41°. Найдите угол NMB. Ответ дайте в градусах.
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=2, BH=18. Найдите CH.
Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Комментарии: