Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные 30° и 105° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда ∠CBA=30°+105°=135°.
Сумма углов четырехугольника равна 360°, тогда получаем, что 360°=135°+135°+∠BAD+∠ADC,
∠BAD+∠ADC=360°-135°-135°=90°, а учитывая, что ∠BAD=∠ADC (по тому
свойству равнобедренной трапеции), получаем ∠BAD=∠ADC=90°/2=45°, эти углы и есть меньшие в трапеции
Ответ: меньший угол трапеции = 45°.
Поделитесь решением
Присоединяйтесь к нам...
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и BDA подобны.
Радиус вписанной в квадрат окружности равен 7√
Площадь прямоугольного треугольника равна 392√
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.
Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Комментарии:
(2015-05-11 16:38:55) Администратор: Спасибо за найденную опечатку, исправлено!
(2015-05-11 14:37:16) : Есть ошибка. Не угол BAC, а угол BAD.
(2015-05-11 14:28:20) : Есть ошибка. Не угол BAC, а угол BAD.