Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда ∠CBA=30°+105°=135°.
Сумма углов четырехугольника равна 360°, тогда получаем, что 360°=135°+135°+∠BAD+∠ADC,
∠BAD+∠ADC=360°-135°-135°=90°, а учитывая, что ∠BAD=∠ADC (по тому
свойству равнобедренной трапеции), получаем ∠BAD=∠ADC=90°/2=45°, эти углы и есть меньшие в трапеции
Ответ: меньший угол трапеции = 45°.
Поделитесь решением
Присоединяйтесь к нам...
В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=25, BC=15, CF:DF=3:2.
Сторона ромба равна 34, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.
На отрезке AB выбрана точка C так, что AC=6 и BC=4. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Комментарии:
(2015-05-11 16:38:55) Администратор: Спасибо за найденную опечатку, исправлено!
(2015-05-11 14:37:16) : Есть ошибка. Не угол BAC, а угол BAD.
(2015-05-11 14:28:20) : Есть ошибка. Не угол BAC, а угол BAD.