Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда ∠CBA=30°+105°=135°.
Сумма углов четырехугольника равна 360°, тогда получаем, что 360°=135°+135°+∠BAD+∠ADC,
∠BAD+∠ADC=360°-135°-135°=90°, а учитывая, что ∠BAD=∠ADC (по тому
свойству равнобедренной трапеции), получаем ∠BAD=∠ADC=90°/2=45°, эти углы и есть меньшие в трапеции
Ответ: меньший угол трапеции = 45°.
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около квадрата, равен 16√
В треугольнике ABC угол C равен 90°, sinA=8/9, AC=2√
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.
В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=10:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника ABC.
Какое наибольшее число коробок в форме прямоугольного параллелепипеда размером 30Х40Х50 (см) можно поместить в кузов машины размером 3Х2Х3,5 (м)?
Комментарии:
(2015-05-11 16:38:55) Администратор: Спасибо за найденную опечатку, исправлено!
(2015-05-11 14:37:16) : Есть ошибка. Не угол BAC, а угол BAD.
(2015-05-11 14:28:20) : Есть ошибка. Не угол BAC, а угол BAD.