ОГЭ, Математика. Геометрия: Задача №AEC5CC | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №AEC5CC

Задача №186 из 1084
Условие задачи:

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части". По свойству равнобедренного треугольника, такая биссектриса является медианой. А медиана, по определению, делит сторону пополам. Следовательно, это утверждение верно.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Нет такого свойства.
3) "Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу", это утверждение верно, по определению.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №797303

Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=18, DK=9, BC=16. Найдите AD.



Задача №0F1154

Основания равнобедренной трапеции равны 16 и 96, боковая сторона равна 58. Найдите длину диагонали трапеции.



Задача №0CC927

В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.



Задача №FFB7DF

Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит больший угол.
2) Любой прямоугольник можно вписать в окружность.
3) Площадь треугольника меньше произведения двух его сторон.



Задача №F73B9F

В трапеции ABCD AB=CD, AC=AD и ∠ABC=123°. Найдите угол CAD. Ответ дайте в градусах.

Комментарии:


(2017-04-30 22:07:28) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-04-27 13:09:48) : Число кустов сирени в парке относится к числу кустов жасмина как 17 к 33 сколько процентов кустов парке составляет кусты сирени

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика