ОГЭ, Математика. Геометрия: Задача №FC3809 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №FC3809

Задача №181 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Любой параллелограмм можно вписать в окружность", это утверждение неверно, т.к. должно выполняться условие об углах параллелограмма.
2) "Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны", это утверждение верно по свойству углов.
3) "Точка пересечения двух окружностей равноудалена от центров этих окружностей", это утверждение неверно. По определению окружности, все точки окружности равноудалены от центра, а точки пересечения окружностей, естественно, принадлежат окружностям, т.е. находятся от центров на расстоянии равном радиусам окружностей. Если окружности имеют разные радиусы, то точка пересечения находится на разных растояниях от центров.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №8D1B00

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 6:5. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.



Задача №231CA8

Найдите площадь треугольника, изображённого на рисунке.



Задача №A17BC2

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=11°. Найдите угол NMB. Ответ дайте в градусах.



Задача №15287E

Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=40.



Задача №74DB59

Дан правильный восьмиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный восьмиугольник.

Комментарии:


(2015-03-09 16:33:57) Администратор: Татьяна, думаю, Вы правы. Я неверно истолковал утверждение. Исправлено. Спасибо большое, что поправили!!!
(2015-03-08 16:15:37) Татьяна: Я думаю, в 3) неверно, так как там не указано, что окружности с одинаковым радиусом, а если это окружности с разными радиусами, то точка их пересечения будет не равноудалена от центров этих окружностей. А вообще, огромная Вам благодарность, спасибо за сайт.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика