ОГЭ, Математика. Геометрия: Задача №0A3EC5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0A3EC5

Задача №163 из 1084
Условие задачи:

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BKC.

Решение задачи:

Рассмотрим треугольники ABC и ACD.
Сторона AC - общая для этих треугольников, AB=CD и BC=AD (по свойству параллелограмма), следовательно рассматриваемые треугольники равны (по третьему признаку). А значит равны и их площади, и равны эти площади половине площади параллелограмма.
Рассмотрим треугольник ACB, как только что выяснили, площадь этого треугольника равна половине площади параллелограмма. Отрезок BK - является медианой (по третьему свойству параллелограмма), и соответственно делит этот треугольник на два равновеликих треугольника, т.е. равных по площади ( свойство медианы).
Следовательно площадь BKC равна половине площади треугольника ACB. SBKC=SACB/2=SABCD/4.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №168D05

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.



Задача №C9CE1D

Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.



Задача №12C88E

Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.



Задача №E98DE9

Сколько досок длиной 4 м, шириной 20 см и толщиной 30 мм выйдет из бруса длиной 80 дм, имеющего в сечении прямоугольник размером 30 см на 40 см?



Задача №FC502C

Пол комнаты, имеющей форму прямоугольника со сторонами 4 м и 10 м, требуется покрыть паркетом из прямоугольных дощечек со сторонами 5 см и 20 см. Сколько потребуется таких дощечек?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика