Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
Рассмотрим каждое утверждение.
1) "Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой", это утверждение верно по
свойству параллельных прямых.
2) "Треугольник со сторонами 1, 2, 4 существует", это утверждение неверно,т.к. длина одной из сторон не может быть больше суммы длин двух других сторон (а 4>1+2).
3) "Если в
ромбе один из углов равен
90°, то такой ромб — квадрат". Чтобы ромб был квадратом, необходимо, чтобы все 4 угла были равны 90°.
Т.к.
ромб - частный случай
параллелограмма, то к нему и применимы все
свойства параллелограмма, следовательно (по
свойству параллелограмма), противоположный прямому углу, угол тоже равен 90°.
Другие два угла по тому же свойству равны друг другу.
Сумма углов многоугольника вычисляется по формуле (n-2)*180°, где n - количество углов. В нашем случае, углов - 4. Тогда сумма углов равна (4-2)*180°=360°.
Тогда получается, что сумма двух неизвестных углов равна 360°-90°-90°=180°. А так как они равны друг другу, то каждый из них равен 180°/2=90°.
Т.е. мы узнали, что все четыре угла равны по 90°, следовательно это утверждение верно.
Поделитесь решением
Присоединяйтесь к нам...
Основания трапеции равны 9 и 54, одна из боковых сторон равна 27, а косинус угла между ней и одним из оснований равен √
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=27, MD=18, H — точка пересечения высот треугольника ABC. Найдите AH.
Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=34.
В трапеции ABCD основания AD и BC равны соответственно 33 и 11,
а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.
Комментарии:
(2014-11-04 14:54:06) Администратор: Галина, очень рад, что наш сайт Вам помог!
(2014-11-04 14:44:19) Галина: всё верно у меня стоит пять за все эти задания в том числе и это!