ОГЭ, Математика. Геометрия: Задача №4BEA6A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4BEA6A

Задача №112 из 1087
Условие задачи:

Человек, рост которого равен 1,6 м, стоит на расстоянии 3 м от уличного фонаря. При этом длина тени человека равна 2 м. Определите высоту фонаря (в метрах).

Решение задачи:

Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE, эти треугольники подобны, т.к. /C - общий, /B и /DEC - прямые, а углы A и EDC - равны, так как являются соответственними.
Из подобия этих треугольников следует, что AB/DE=BC/EC, отсюда AB=(BC*DE)/EC=((3+2)*1,6)/2=4.
Ответ: высота фонаря равна 4 м.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D5823B

Радиус окружности, вписанной в прямоугольную трапецию, равен 18. Найдите высоту этой трапеции.



Задача №1C7299

В трапеции ABCD основания AD и BC равны соответственно 33 и 11, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.



Задача №D56817

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №7C5CEF

Радиус окружности, вписанной в трапецию, равен 48. Найдите высоту этой трапеции.



Задача №09EE8F

Тангенс острого угла прямоугольной трапеции равен 5/3. Найдите её большее основание, если меньшее основание равно высоте и равно 40.

Комментарии:


(2018-02-14 17:44:00) : рост человека 1.6 м стоит на расстоянии 3 м от столба длина тени человека 2 метра . длина фонаря

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика