В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AB*BC*cos∠ABC
42=22+32-2*2*3*cos∠ABC
16=4+9-12cos∠ABC
16-4-9=-12cos∠ABC
3=-12cos∠ABC
cos∠ABC=3/(-12)=-1/4=-0,25
Ответ: -0,25
Поделитесь решением
Присоединяйтесь к нам...
Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Площадь круга меньше квадрата длины его диаметра.
3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
Радиус окружности, вписанной в трапецию, равен 32. Найдите высоту этой трапеции.
Радиус вписанной в квадрат окружности равен 2√2. Найдите диагональ этого квадрата.
Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром описанной окружности треугольника является точка пересечения серединных перпендикуляров к его сторонам.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=17. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: