Радиус окружности, описанной около квадрата, равен 48√2. Найдите радиус окружности, вписанной в этот квадрат.
Проведем диаметры
описанной окружности, как показано на первом рисунке.
Очевидно, что
квадрат разделился на 4 равных треугольника, углы, которые опираются на центр окружности (О), равны 360°/4=90°, т.е. эти треугольники
прямоугольные.
Тогда, по теореме Пифагора:
AB2=R2+R2
AB2=2R2
AB2=2(4√2)2
AB2=2*16*2=64
AB=√64=8
Проведем радиус
вписанной окружности, как на втором рисунке.
Очевидно, что:
r=AB/2=8/2=4
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Основания равнобедренной трапеции равны 3 и 17, боковая сторона равна 25. Найдите длину диагонали трапеции.
В треугольнике ABC угол C равен 90°, cosB=5/6, AB=18. Найдите BC.
На стороне AC треугольника ABC отмечена точка D так, что AD=5, DC=7. Площадь треугольника ABC равна 60. Найдите площадь треугольника ABD.
В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.
Радиус вписанной в квадрат окружности равен 7√
Комментарии: