Сторона равностороннего треугольника равна 14√3. Найдите медиану этого треугольника.
Введем обозначения как показано на рисунке.
По
определению равностороннего треугольника:
AB=BC=AC=14√3
По
свойству равностороннего треугольника, медиана является так же и
биссектрисой, и
высотой.
Следовательно:
1) BD перпендикулярен AC (т.к. BD -
высота), т.е. треугольник ABD -
прямоугольный.
2) AD=AC/2 (т.к. AC - медиана).
По
теореме Пифагора:
AB2=BD2+AD2
AB2=BD2+(AC/2)2
196*3=BD2+49*3
588=BD2+147
BD2=588-147=441
BD=√441=21
Ответ: 21
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=3 и CH=1. Найдите cosB.
Периметр треугольника равен 54, одна из сторон равна 15,
а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.
Лестница соединяет точки A и B и состоит из 30 ступеней. Высота каждой ступени равна 13 см, а длина – 84 см. Найдите расстояние между точками A и B (в метрах).
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 35° и 30°. Найдите больший угол параллелограмма.
Комментарии: