ОГЭ, Математика. Геометрия: Задача №20E710 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем перпендикулярный отрезок от одной стороны параллелограмма к другой через точку Е, как показано на рисунке.
Обозначим концы отрезка как F и G.
FG - высота параллелограмма, так как перпендикулярен двум сторонам (мы сами так его провели).
Площадь параллелограмма:
SABCD=FG*AD=FG*BC
Рассмотрим треугольники AEG и BEF:
AE=EB (по условию задачи).
∠AEG=∠BEF (они вертикальные).
∠GAE=∠FBE (они накрест-лежащие).
Тогда, по второму признаку равенства треугольников, данные треугольники равны.
Это означает, что EF=EG=FG/2
EF - высота треугольника CBE.
Воспользуемся формулой площади треугольника через высоту и основание:

Ответ: 35

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1DE40E

В окружности с центром в точке O проведены диаметры AD и BC, угол OAB равен 70°. Найдите величину угла OCD.



Задача №BFF02E

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CMD.



Задача №D35E73

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=5, AC=45.



Задача №DFAAD8

Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 48, а площадь равна 288.



Задача №09EDE9

Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика