Радиус вписанной в квадрат окружности равен 24√2. Найдите радиус окружности, описанной около этого квадрата.
Проведем радиус
вписанной окружности, как на рисунке.
Очевидно, что r=a/2, где а - сторона
квадрата.
a=2r=2*24√2=48√2
Проведем диаметры
описанной окружности, как показано на втором рисунке.
Очевидно, что
квадрат разделился на 4 равных треугольника, углы, которые опираются на центр окружности (О), равны 360°/4=90°, т.е. эти треугольники
прямоугольные.
Тогда, по теореме Пифагора:
AB2=OA2+OB2
a2=R2+R2
a2=2R2
(48√2)2=2R2
2304*2=2R2
2304=R2
R=√2304=48
Ответ: 48
Поделитесь решением
Присоединяйтесь к нам...
Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=19.
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.
ABCDEFGH – правильный восьмиугольник. Найдите угол EFG. Ответ дайте в градусах.
Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 132°. Найдите вписанный угол ACB. Ответ дайте в градусах.
Комментарии:
(2024-02-11 17:36:43) лена: ттт