ОГЭ, Математика. Геометрия: Задача №296C71 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №296C71

Задача №978 из 1087
Условие задачи:

На окружности отмечены точки A и B так, что меньшая дуга AB равна 66°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Решение задачи:

Проведем радиусы к точкам A и B, как показано на рисунке.
∠AOB - центральный и опирается на дугу в 66°, следовательно:
∠AOB=66°
Треугольник AOB - равнобедренный, так как две его стороны - это радиусы окружности.
Тогда, по свойству равнобедренного треугольника, углы при основании равны, обозначим их α.
По теореме о сумме углов треугольника:
∠AOB+∠OAB+∠OBA=180°
66°+α+α=180°
2α=180°-66°=114°
α=114°/2=57°
По свойству касательной ∠OBC=90°.
∠ABC=∠OBC-∠OBA
∠ABC=90°-57°=33°
Ответ: 33

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №27C4C0

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.



Задача №C84B98

Радиус вписанной в квадрат окружности равен 4√2. Найдите диагональ этого квадрата.



Задача №151F1A

В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 132°. Найдите вписанный угол ACB. Ответ дайте в градусах.



Задача №0CD22D

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.



Задача №34D939

Площадь равнобедренного треугольника равна 1443. Угол, лежащий напротив основания, равен 120°. Найдите длину боковой стороны.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства касательной к окружности:
1) Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

2) Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика