ОГЭ, Математика. Геометрия: Задача №210C80 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №210C80

Задача №671 из 1087
Условие задачи:

Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.

Решение задачи:

Пусть:
∠KMP=44°
∠MKP=71°
∠KPM=65°
Рассмотрим треугольник AMK.
AM=AK (по второму свойству касательной)
Следовательно треугольник AMK - равнобедренный, тогда, по свойству равнобедренного треугольника:
∠AMK=∠AKM
Заметим, что оба этих угла охватывают дугу MK, и следовательно равны половине ее градусной меры (по свойству углов на окружности).
∠KPM является вписанным в окружность углом и опирается на эту же дугу, следовательно и он равен половине градусной меры этой дуги.
Получается, что:
∠AMK=∠AKM=∠KPM=65°
Применив теорему о сумме углов треугольника:
180°=∠AMK+∠AKM+∠MAK
180°=65°+65°+∠MAK
∠MAK=50°
Аналогично, для двух других треугольников получим:
∠BKP=∠BPK=∠KMP=44°
∠KBP=180°-44°-44°=92°
И...
∠CPM=∠CMP=∠MKP=71°
∠PCM=180°-71°-71°=38°
Ответ: 50°, 92° и 38°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №223031

В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=88 и BC=BM. Найдите AH.



Задача №04CBF1

Найдите площадь ромба, если его диагонали равны 39 и 2.



Задача №CC1B07

Какие из следующих утверждений верны?
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Диагонали ромба равны.
3) Тангенс любого острого угла меньше единицы.



Задача №A57605

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AOD.



Задача №E4988D

В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства касательной к окружности:
1) Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

2) Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика