ОГЭ, Математика. Геометрия: Задача №210C80 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №210C80

Задача №671 из 1087
Условие задачи:

Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.

Решение задачи:

Пусть:
∠KMP=44°
∠MKP=71°
∠KPM=65°
Рассмотрим треугольник AMK.
AM=AK (по второму свойству касательной)
Следовательно треугольник AMK - равнобедренный, тогда, по свойству равнобедренного треугольника:
∠AMK=∠AKM
Заметим, что оба этих угла охватывают дугу MK, и следовательно равны половине ее градусной меры (по свойству углов на окружности).
∠KPM является вписанным в окружность углом и опирается на эту же дугу, следовательно и он равен половине градусной меры этой дуги.
Получается, что:
∠AMK=∠AKM=∠KPM=65°
Применив теорему о сумме углов треугольника:
180°=∠AMK+∠AKM+∠MAK
180°=65°+65°+∠MAK
∠MAK=50°
Аналогично, для двух других треугольников получим:
∠BKP=∠BPK=∠KMP=44°
∠KBP=180°-44°-44°=92°
И...
∠CPM=∠CMP=∠MKP=71°
∠PCM=180°-71°-71°=38°
Ответ: 50°, 92° и 38°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F48418

Площадь параллелограмма ABCD равна 56. Точка E — середина стороны CD. Найдите площадь трапеции AECB.



Задача №0CF105

Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).



Задача №D60018

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=9, AC=18, MN=8. Найдите AM.



Задача №69CD50

В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.



Задача №EA6181

Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства касательной к окружности:
1) Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

2) Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика