ОГЭ, Математика. Геометрия: Задача №01353A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1
Рассмотрим треугольники ABC и ACH.
∠AHC=∠ACB (т.к. это прямые углы).
∠A - общий.
Следовательно, по теореме о сумме углов треугольника ∠ACH=∠ABC
Тогда sin∠ACH=sin∠ABC.
Теперь рассмотрим треугольник ACH.
По теореме Пифагора:
AC2=CH2+AH2
652=(1321)2+AH2
4225=169*21+AH2
AH2=4225-3549
AH2=676
AH=26
sin∠ACH=AH/AC (по определению)
sin∠ACH=26/65=0,4
Как было выведено выше:
sin∠ABC=sin∠ACH=0,4
Ответ: sin∠ABC=0,4


Вариант №2 (предложил пользователь Валентина)
Рассмотрим треугольник ACH.
Так как CH - высота, то данный треугольник прямоугольный.
Следовательно, можно воспользоваться теоремой Пифагора:
AC2=AH2+CH2
652=AH2+(1321)2
4225=AH2+132*21
4225=AH2+3549
AH2=4225-3549=676
AH=26
По свойству прямоугольного треугольника (Пропорциональные отрезки):
AC2=AB*AH
652=AB*26
AB=4225/26=162,5
По определению синуса:
sin∠ABC=AC/AB=65/162,5=0,4
Ответ: 0,4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №09EFF9

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.



Задача №09F434

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.



Задача №002D6D

Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.



Задача №0C7DF1

В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.



Задача №4BEA6A

Человек, рост которого равен 1,6 м, стоит на расстоянии 3 м от уличного фонаря. При этом длина тени человека равна 2 м. Определите высоту фонаря (в метрах).

Комментарии:


(2021-02-11 16:45:24) Игорь : В треугольнике ABC, AC=13 см и биссектриса угла A делит сторону BC на отрезки BM=3см, MC=5см. Определите сторону AB.
(2015-11-16 22:51:08) Администратор: Валентина, хороший вариант. Я решил его опубликовать, спасибо.
(2015-11-13 12:15:00) валентина: 1)AH^2=4225-3549=676;AH=26. 2)AC^2=AB*AH;AB=4225:26=162,5. 3)sinABC=65:162,5=0,4. Тема:Пропорциональные отрезки в прямоугольном треугольнике:2).

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Пропорциональные отрезки в прямоугольном треугольнике.

1) Высота, опущенная из вершины прямого угла на гипотенузу, есть среднее пропорциональное между проекциями катетов:
BD/DC=AD/BD или BD=DC*AD
2) Каждый катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу:
BC/AC=CD/BC или BC=AC*CD
AB/AC=AD/AB или AB=AC*AD
3) Высота опущенная на гипотенузу, делит гипотенузу в таком отношении, в каком находятся квадраты прилежащих катетов:
AD/CD=AC2/BC2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика