ОГЭ, Математика. Геометрия: Задача №552514 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №552514

Задача №586 из 1087
Условие задачи:

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=15, AC=25.

Решение задачи:

OC является радиусом окружности R, AO=AC-OC.
Проведем отрезок BO. BO - так же является радиусом окружности. AB - касательная к окружности, следовательно AB перпендикулярен BO (по свойству касательной).
Значит треугольник ABO - прямоугольный, тогда по теореме Пифагора:
AO2=AB2+BO2
(AC-OC)2=AB2+R2
(25-R)2=152+R2
625-50R+R2=225+R2
625-225=50R
400=50R
R=8
D=2R=2*8=16
Ответ: D=16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №061DDF

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=27, MD=18, H — точка пересечения высот треугольника ABC. Найдите AH.



Задача №04E270

Сторона равностороннего треугольника равна 103. Найдите его биссектрису.



Задача №168D05

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.



Задача №E92343

Найдите площадь трапеции, изображённой на рисунке.



Задача №DBF599

Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные 30° и 105° соответственно.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Касательная к окружности - это прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика