Окружности радиусов 45 и 90 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Рассмотрим
трапецию ACO1O2
Данная трапеция
прямоугольная, т.к. радиусы перпендикулярны
касательной AC (по
свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 -
прямоугольник.
По
теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(90+45)2=(O2K)2+(90-45)2
18225=(O2K)2+2025
(O2K)2=16200
O2K=10√
Рассмотрим треугольники OAO2 и OCO1 (cм. Рис.1).
∠AOO2 - общий
∠OAO2=∠OCO1=90°
Следовательно эти треугольники
подобны (по
первому признаку подобия треугольников).
Тогда, R/r=OC/OA
90/45=OC/OA=(OA+AC)/OA
2*OA=OA+10√
OA=10√
Из
подобия этих же треугольников:
R/r=O10/O2O
R/r=(O2O+R+r)/O2O
90/45=(O2O+90+45)/O2O
2(O2O)=O2O+135
O2O=135
Обозначим угол ∠AOO2 как α
cosα=OA/OO2=10√
Посмотрим на треугольники OAE и OCF.
Они
прямоугольные по
второму свойству хорды.
Тогда для треугольника OAE:
cosα=OE/OA
OE=OA*cosα=10√
Для треугольника OCF:
cosα=OF/OC
OF=OC*cosα=(OA+AC)*cosα=(10√
EF=OF-OE=240-120=120
Ответ: EF=120
Поделитесь решением
Присоединяйтесь к нам...
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
Сторона равностороннего треугольника равна 2√
Укажите номера верных утверждений.
1) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
2) Смежные углы равны.
3) Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой.
Радиус окружности, описанной около квадрата, равен 36√2. Найдите длину стороны этого квадрата.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Комментарии:
(2018-11-23 22:20:48) Администратор: Алевтина, если Вы можете предложить решение проще, напишите нам, будем очень благодарны, не только мы, но и все пользователи. Мы обязательно опубликуем Ваше решение под Вашим именем.
(2018-11-21 22:48:47) алевтина: Вопрос заключается в следующем: почему очень простую и лёгкую задачу, которую можно решить в два действия, Вы решаете сложно и неинтересно???
(2014-05-24 18:44:07) танюшка: Идеально.