ОГЭ, Математика. Геометрия: Задача №03D0F6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №03D0F6

Задача №430 из 1087
Условие задачи:

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.

Решение задачи:

Проведем несколько отрезков:
EH - радиус малой окружности. Он перпендикулярен AB (по свойству касательной).
FG - радиус большой окружности. Он перпендикулярен AB (по свойству касательной).
HG - отрезок, соединяющий центры окружностей и равный R+r, так как он проходит через точку К.
Рассмотрим треугольники AFG и AEH:
∠EAH - общий;
углы AEH и AFG - прямые.
Следовательно эти треугольники подобны, тогда:
FG/EH=AG/AH
FG/EH=(AH+HG)/AH
42/39=(AH+R+r)/AH
42AH=39(AH+81)
42AH-39AH=3159
AH=1053
sin∠EAH=EH/AH=39/1053=1/27
AK=AH+r=1053+39=1092
AK перпендикулярен BC, т.к. AK - это продолжение большого и малого радиусов, а BC - касательная к малой окружности ( свойство касательной). AK делит хорду BC (BC - хорда для большой окружности) пополам (по второму свойству хорды).
Треугольник ABC - равнобедренный, т.к. AK - и медиана и высота ( свойство равнобедренного треугольника).
Теперь уберем из рисунка все, что нас больше не интересует и резюмируем, что мы знаем:
AK=1092
sinα=1/27
Так как AK - биссектриса, то центр описанной окружности находится на AK.
Найдем AB.
По теореме Пифагора:
AB2=AK2+BK2
AB2=AK2+(AB*sinα)2
AB2-AB2*sin2α=10922
AB2(1-1/272)=10922
AB2(272-1)=272*10922
AB2=272*10922/(272-1)
Рассмотрим треугольник AOB.
AO=OB, так как это радиусы окружности, следовательно данный треугольник равнобедренный.
Проведем высоту ON, в равнобедренном треугольнике она так же является и медианой (по свойству равнобедренного треугольника).
sinα=ON/AO => ON=AO/27
По теореме Пифагора:
AO2=ON2+AN2
AO2=AO2/272+(AB/2)2
AO2((272-1)/272)=272*10922/(272-1)
Закончив все вычисления, получаем, что AO=546,75
Ответ: Радиус описанной окружности равен 546,75.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №274F75

Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали любого прямоугольника делят его на 4 равных треугольника.
3) Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса.



Задача №FC3809

Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.



Задача №0856D8

В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?



Задача №08CDD9

На клетчатой бумаге с размером клетки 1x1 изображён параллелограмм. Найдите его площадь.



Задача №C7A2A0

В треугольнике ABC угол C равен 90°, AC=24, AB=25. Найдите sinB.

Комментарии:


(2015-05-26 10:50:39) Денис: Я нашел ошибку. ближе к концу там должно быть АВ пополам, а не просто.!!!
(2015-05-26 10:24:03) Решение не верно: при нахождении синуса угла. проверьте.
(2015-04-19 17:44:00) Администратор: Татьяна, да, не пригодился это отрезок, изначально решение было немного другим, где он был нужен...
(2015-04-19 14:09:59) Татьяна: Для чего был проведен отрезок HI?
(2014-05-29 18:57:59) Екатерина: Спасибо большое за решение

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Касательная к окружности - это прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика