Четырёхугольник ABCD со сторонами AB=19 и CD=28 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠
AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Вариант №1 (предложил пользователь Всеволод).
Проведем BE||AC
ABCE - трапеция по
определению.
Так как эта
трапеция вписана в окружность, то данная
трапеция равнобедренная (по
свойству описанной окружности).
Следовательно EC=AB=19.
∠AKB=∠KBE=60°, т.к. это
накрест лежащие углы при параллельных прямых BE и AC.
BECD - четырехугольник, вписанный в окружность, следовательно:
∠ECD+∠KBE=180° (по
свойству).
∠ECD=180°-∠KBE=180°-60°=120°
Применим
теорему косинусов для треугольника CDE:
ED2=EC2+CD2-2*EC*CD*cos∠ECD
ED2=192+282-2*19*28*cos120°
ED2=361+784-2*19*28*(-1/2)
ED2=1145+532=1677
ED=√
А теперь применим
теорему синусов для треугольника CDE:
ED/sin∠ECD=2R
R=√
Ответ: R=√
Поделитесь решением
Присоединяйтесь к нам...
Боковые стороны AB и CD трапеции ABCD равны соответственно 40 и 41, а основание BC равно 16. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.
Комментарии: