Постройте график функции
x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Чтобы построить график функции состоящей из двух подфункций, необходимо построить график каждой подфункции на указанных для них диапазонах и объединить эти графики.
Так как в данном примере диапазоны обозначены неравенствами с
функцией модуля, то сначала решим эти неравенства:
Функция |x| всегда принимает положительные значения, и |x| будет меньше или равен 1, когда -1≤х≤1, т.е. x⊂[-1;1].
Следовательно |x|>1 на всем остальном пространстве, т.е. x⊂(-∞;-1)∪(1;+∞).
Запишем получившуюся функцию:
x2, если x⊂[-1;1]
1/x, если x⊂(-∞;-1)∪(1;+∞)
Построим по точкам график обоих подфункций в указанных диапазонах:
x2, если x⊂[-1;1]
| X | -1 | 0 | 1 |
| Y | 1 | 0 | 1 |
| X | -5 | -2 | -1 | 1 | 2 | 5 |
| Y | -0,2 | -0,5 | -1 | 1 | 0,5 | 0,2 |
График первой подфункции начерчен красным цветом, график второй подфункции - синим.
Обратите внимание, что при с=0 прямая касается графика красной подфункции, а при всех остальных значениях - пересекает синюю подфункцию.Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
| А) | ![]() |
Б) | ![]() |
В) | ![]() |
ФОРМУЛЫ 1) y=-1/(6x) 2) y=1/(6x) 3) y=-6/x 4) y=6/x |
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
| КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
|
1) k<0, b>0 2) k<0, b<0 3) k>0, b<0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
| УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
| А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [0; 2] 2) [2; 5] 3) [4; 7] 4) [1; 7] |
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) ƒ(x)<0 при x<1
2) Наибольшее значение функции равно 3
3) ƒ(0)>ƒ(4)
Постройте график функции y=|x|(x+1)-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: