Постройте график функции y=|x|x+|x|-6x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Данная функция содержит
модуль, следовательно ее нужно разложить на две функции:
x*x+x-6x, при x≥0
(-x)x+(-x)-6x, при x<0
x2-5x, при x≥0
-x2-7x, при x<0
Обе подфункции - параболы. Построим их по точкам:
y1=x2-5x (красный график)
| X | 0 | 1 | 2 | 3 |
| Y | 0 | -4 | -6 | -6 |
| X | 0 | -1 | -2 | -3 |
| Y | 0 | 6 | 10 | 12 |
Поделитесь решением
Присоединяйтесь к нам...
За 6 минут велосипедист проехал a километров. Сколько километров он проедет за 35 минут, если будет ехать с той же скоростью? Запишите соответствующее выражение.
Решите уравнение (x-2)(x-3)(x-4)=(x-3)(x-4)(x-5).
Решите уравнение (4x-8)2(x-8)=(4x-8)(x-8)2.
Упростите выражение (a-4)2-2a(5a-4) и найдите его значение при a=-1/3. В ответе запишите найденное значение.
Найдите значение выражения
при a=-60, x=12.
Комментарии: