Постройте график функции y=|x|x+|x|-6x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Данная функция содержит
модуль, следовательно ее нужно разложить на две функции:
x*x+x-6x, при x≥0
(-x)x+(-x)-6x, при x<0
x2-5x, при x≥0
-x2-7x, при x<0
Обе подфункции - параболы. Построим их по точкам:
y1=x2-5x (красный график)
| X | 0 | 1 | 2 | 3 |
| Y | 0 | -4 | -6 | -6 |
| X | 0 | -1 | -2 | -3 |
| Y | 0 | 6 | 10 | 12 |
Поделитесь решением
Присоединяйтесь к нам...
Автобус проехал x километров и израсходовал при этом 27 литров топлива. На сколько километров хватит 80 литров топлива при таких же условиях езды? Запишите соответствующее выражение.
Найдите значение выражения
при a=9,2.
Площадь четырёхугольника можно вычислить по формуле
, где d1 и d2 — длины диагоналей четырёхугольника, α — угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d2,
если d1=7, sinα=6/11, a S=21.
Сколько целых чисел расположено между √13 и √130?
Упростите выражение 
Комментарии: