Решите уравнение x(x2+6x+9)=4(x+3).
Если внимательно посмотреть на уравнение, то можно заметить, что скобка в левой части представляет из себя квадрат суммы:
x(x2+6x+32)=4(x+3)
x(x+3)2=4(x+3)
x(x+3)2-4(x+3)=0
Вынесем за общую скобку (x+3):
(x+3)(x(x+3)-4)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому приравняем каждую скобку к нулю и найдем решения:
1) x+3=0 => x1=-3
2) x(x+3)-4=0
x2+3x-4=0
Решим это квадратное уравнение через дискриминант:
D=32-4*1*(-4)=9+16=25
x2=(-3+5)/(2*1)=2/2=1
x3=(-3-5)/(2*1)=-8/2=-4
Ответ: x1=-3, x2=1, x3=-4
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение (x+2)4-4(x+2)2-5=0.
Решите неравенство (x-4)2<√
На координатной прямой отмечено число a.
Найдите наименьшее из чисел a2, a3, a4.
Решите уравнение (x2-9)2+(x2-2x-15)2=0.
Решите неравенство 9x-4(2x+1)>-8.
1) (-4;+∞)
2) (-12;+∞)
3) (-∞;-4)
4) (-∞;-12)
Комментарии: