ОГЭ, Математика. Геометрия: Задача №1A8DC8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант 1 (Предложил пользователь Светлана)
Вокруг любого правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам десятиугольника образуют равные углы, так как разбивают десятиугольник на равные треугольники.
Такой угол (например ∠IOJ) равен 360°/10=36°
∠IOJ является центральным, следовательно градусная мера дуги тоже равна 36°
∠IBJ тоже опирается на эту же дугу, но является вписанным, следовательно:
∠IBJ=36°/2=18° (по теореме о вписанном угле)
Ответ: 18


Вариант 2
Рассмотрим треугольник ABJ. Так как AB=AJ (по определению правильного многоугольника), то треугольник ABJ - равнобедренный.
Следовательно ∠AJB=∠ABJ (по свойству равнобедренного треугольника).
Сумма углов n-угольника равна 180°(n-2), значит сумма углов 10-угольника равна 180°(n-2)=180°(10-2)=1440°.
Тогда ∠A=1440°/10=144°.
Используя теорему о сумме углов треугольника, найдем углы AJB и ABJ.
Углы AJB и ABJ равны (180°-144°)/2=18° каждый.
Рассмотрим четырехугольник IJAB.
IJ=JA=AB (из определения правильно n-угольника) и ∠J=∠A, тогда IJAB - равнобедренная трапеция (по признаку равнобедренной трапеции), следовательно JA||IB (по определению трапеции).
Следовательно, ∠IBJ=∠AJB=18° (т.к. это накрест-лежащие углы).
Ответ: ∠IBJ=18°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №27810C

Найдите площадь треугольника, изображённого на рисунке.



Задача №5D7F1F

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.



Задача №09EE8F

Тангенс острого угла прямоугольной трапеции равен 5/3. Найдите её большее основание, если меньшее основание равно высоте и равно 40.



Задача №EE3D1E

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 155°. Найдите угол C. Ответ дайте в градусах.



Задача №FBD6AC

Стороны AC, AB, BC треугольника ABC равны 32, 15 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Признак равнобедренной трапеции - Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика