Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
Рассмотрим каждое утверждение.
1) В тупоугольном треугольнике все углы тупые.
Тупой угол - это угол больше 90°. Если утверждение верно, то сумма углов тупоугольного треугольника будет дольше 270°. А это не верно, т.к. противоречит теореме о сумме углов треугольника. Утверждение неверно.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам. Это утверждение верно, т.к. это свойство параллелограмма.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка. Это утверждение верно, т.к. это свойство серединного перпендикуляра (другое название - медиатрисса).
Ответ: 2), 3)
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC проведена биссектриса AL, угол ALC равен 169°, угол ABC равен 160°. Найдите угол ACB. Ответ дайте в градусах.
В треугольнике ABC известно, что AB=6, BC=10, sin∠ABC=1/3. Найдите площадь треугольника ABC.
В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=97 и BC=BM. Найдите AH.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
Комментарии: