ОГЭ, Математика. Геометрия: Задача №CA72D9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №CA72D9

Задача №659 из 1087
Условие задачи:

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.

Решение задачи:

AB - является хордой для обоих окружностей.
По второму свойству хорды, серединный перпендикуляр хорды проходит через центр обеих окружностей.
А так как через две точки можно провести только одну прямую, то серединный перпендикуляр и есть прямая IJ.
Т.е. IJ перпендикулярна AB.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F9DE8F

Высота равностороннего треугольника равна 963. Найдите его периметр.



Задача №1B8713

В треугольнике ABC угол C равен 90°, cosB=2/5, AB=10. Найдите BC.



Задача №0D47D3

Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 12 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 5 м. Найдите длину троса.



Задача №E41C75

Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.



Задача №D0E82E

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите этот диаметр, если диаметр описанной окружности треугольника ABC равен 8.

Комментарии:


(2016-01-05 15:59:33) Дима: Спасибо!!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Серединный перпендикуляр или медиатрисса — прямая, перпендикулярная к данному отрезку и делящая его на две равные части.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика