ОГЭ, Математика. Геометрия: Задача №CA72D9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №CA72D9

Задача №659 из 1087
Условие задачи:

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.

Решение задачи:

AB - является хордой для обоих окружностей.
По второму свойству хорды, серединный перпендикуляр хорды проходит через центр обеих окружностей.
А так как через две точки можно провести только одну прямую, то серединный перпендикуляр и есть прямая IJ.
Т.е. IJ перпендикулярна AB.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №04A87F

Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.



Задача №0F1154

Основания равнобедренной трапеции равны 16 и 96, боковая сторона равна 58. Найдите длину диагонали трапеции.



Задача №D3AE8B

В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.



Задача №2F96EB

Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.



Задача №AEC23E

В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.

Комментарии:


(2016-01-05 15:59:33) Дима: Спасибо!!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Серединный перпендикуляр или медиатрисса — прямая, перпендикулярная к данному отрезку и делящая его на две равные части.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика