Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.
AB - является
хордой для обоих окружностей.
По
второму свойству хорды,
серединный перпендикуляр
хорды проходит через центр обеих окружностей.
А так как через две точки можно провести только одну прямую, то
серединный перпендикуляр и есть прямая IJ.
Т.е. IJ перпендикулярна AB.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=7 и HD=24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма.
Стороны AC, AB, BC треугольника ABC равны 3√
Диагональ прямоугольника образует угол 51° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
Один из углов равнобедренной трапеции равен 113°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.
Комментарии:
(2016-01-05 15:59:33) Дима: Спасибо!!!