Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.
AB - является
хордой для обоих окружностей.
По
второму свойству хорды,
серединный перпендикуляр
хорды проходит через центр обеих окружностей.
А так как через две точки можно провести только одну прямую, то
серединный перпендикуляр и есть прямая IJ.
Т.е. IJ перпендикулярна AB.
Поделитесь решением
Присоединяйтесь к нам...
Высота равностороннего треугольника равна
15√
Найдите угол ABC. Ответ дайте в градусах.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30° и 45°. Найдите больший угол параллелограмма.
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=22.
В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.
Комментарии:
(2016-01-05 15:59:33) Дима: Спасибо!!!