Геометрическая прогрессия задана условием bn=40*(-2)n. Найдите сумму первых её 5 членов.
Чтобы найти сумму первых 5 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=40*(-2)1=-80 (из условия задачи). А q=-2.
Тогда S5=-80*(1-(-2)5)/(1-(-2))=-80*(1-(-32))/3=-80*33/3=-80*11=-880
Ответ: S5=-880
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.
Записаны первые три члена арифметической прогрессии: 30; 24; 18. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Арифметическая прогрессия задана условиями a1=23, an+1=an-15. Найдите сумму первых 8 её членов.
Геометрическая прогрессия (bn) задана условиями:
, bn+1=-3bn.
Найдите b7.
Выписаны первые несколько членов арифметической прогрессии: 4; 7; 10; … Найдите сумму первых шестидесяти пяти её членов.
Комментарии: