Геометрическая прогрессия задана условием bn=40*(-2)n. Найдите сумму первых её 5 членов.
Чтобы найти сумму первых 5 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=40*(-2)1=-80 (из условия задачи). А q=-2.
Тогда S5=-80*(1-(-2)5)/(1-(-2))=-80*(1-(-32))/3=-80*33/3=-80*11=-880
Ответ: S5=-880
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов арифметической прогрессии: …; 6; x; 10; 12; … Найдите член прогрессии, обозначенный буквой x.
Записаны первые три члена арифметической прогрессии: 30; 27; 24. Какое число стоит в этой арифметической прогрессии на 101-м месте?
Последовательность задана условиями b1=-3, bn+1=-3*1/bn. Найдите b4.
Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.
Арифметическая прогрессия задана условиями a1=0,9, an+1=an+1,1. Найдите сумму первых 11 её членов.
Комментарии: