ОГЭ, Математика. Числовые последовательности: Задача №C9BE44 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму первых 5 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=40*(-2)1=-80 (из условия задачи). А q=-2.
Тогда S5=-80*(1-(-2)5)/(1-(-2))=-80*(1-(-32))/3=-80*33/3=-80*11=-880
Ответ: S5=-880

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №25E8A7

Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.



Задача №4CF23C

Записаны первые три члена арифметической прогрессии: 30; 24; 18. Какое число стоит в этой арифметической прогрессии на 51-м месте?



Задача №02D67E

Арифметическая прогрессия задана условиями a1=23, an+1=an-15. Найдите сумму первых 8 её членов.



Задача №2A803D

Геометрическая прогрессия (bn) задана условиями:
, bn+1=-3bn.
Найдите b7.



Задача №4265BE

Выписаны первые несколько членов арифметической прогрессии: 4; 7; 10; … Найдите сумму первых шестидесяти пяти её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика