Геометрическая прогрессия задана условием bn=-77*2n. Найдите сумму первых её 5 членов.
Вариант №1
Чтобы найти сумму первых 5 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=-77*21=-154 (из условия задачи). А q=2.
Тогда S5=-154*(1-25)/(1-2)=-154*(1-32)/(-1)=-154*31=-4774
Ответ: -4774
Вариант №2
В данной задаче надо найти сумму всего 5-и первых членов. Поэтому можно просто вычислить значения каждого члена и сложить их:
b1=-77*2n=-154
По определению геометрической прогрессии:
b2=b1*q=-154*2=-308
b3=b2*q=-308*2=-616
b4=-616*2=-1232
b5=-1232*2=-2464
S5=-154-308-616-1232-2464=-4774
Ответ: -4774
Поделитесь решением
Присоединяйтесь к нам...
Дана геометрическая прогрессия (bn), знаменатель которой равен 2, b1=16. Найдите b4.
Дана арифметическая прогрессия: -6; -3; 0; … Найдите сумму первых сорока её членов.
Дана арифметическая прогрессия: 6; 8; 10; … . Найдите сумму первых шестидесяти её членов.
Дана арифметическая прогрессия: 6; 10; 14; … . Найдите сумму первых пятидесяти её членов.
Последовательность задана условиями a1=3, an+1=an+4. Найдите a10.
Комментарии: