ОГЭ, Математика. Числовые последовательности: Задача №75ED29 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1
Чтобы найти сумму первых 5 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=-77*21=-154 (из условия задачи). А q=2.
Тогда S5=-154*(1-25)/(1-2)=-154*(1-32)/(-1)=-154*31=-4774
Ответ: -4774
Вариант №2
В данной задаче надо найти сумму всего 5-и первых членов. Поэтому можно просто вычислить значения каждого члена и сложить их:
b1=-77*2n=-154
По определению геометрической прогрессии:
b2=b1*q=-154*2=-308
b3=b2*q=-308*2=-616
b4=-616*2=-1232
b5=-1232*2=-2464
S5=-154-308-616-1232-2464=-4774
Ответ: -4774

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №81EE75

Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.



Задача №74FE0A

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 117-й строке?



Задача №52BAE5

Последовательность (bn) задана условиями:
b1=7, bn+1=-3*(1/bn)
Найдите b3.



Задача №8140DA

Записаны первые три члена арифметической прогрессии: -8; -1; 6. Какое число стоит в этой арифметической прогрессии на 51-м месте?



Задача №BE16EF

Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; … Найдите сумму первых шестидесяти её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика