ОГЭ, Математика. Числовые последовательности: Задача №5D7579 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №5D7579

Задача №132 из 182
Условие задачи:

В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 120. Найдите первые три члена этой прогрессии.

Решение задачи:

Каждый член геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=40
b1+b1q=40
b1(1+q)=40
2) b2+b3=120
b1q+b1q2=120
b1(q+q2)=120
b1(q+1)q=120
Подставляем из п. 1)
40q=120 => q=3, тогда b1(1+3)=40 => b1=10
b2=10*3=30
b3=10*32=90
Ответ: b1=10, b2=30, b3=90

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F23165

Геометрическая прогрессия задана условиями b1=-6, bn+1=2bn. Найдите b6.



Задача №8AE1ED

В геометрической прогрессии сумма первого и второго членов равна 72, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.



Задача №20B9C2

Дана арифметическая прогрессия (an), разность которой равна 1,6, a1=-1. Найдите a11.



Задача №76C853

В геометрической прогрессии сумма первого и второго членов равна 144, а сумма второго и третьего членов равна 48. Найдите первые три члена этой прогрессии.



Задача №FF975C

В геометрической прогрессии сумма первого и второго членов равна 144, а сумма второго и третьего членов равна 72. Найдите первые три члена этой прогрессии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика