Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.
В
геометрической прогрессии зависимость членов прогрессии можно записать так: bn+1=bnq
Пусть 20 - это n-ый член прогрессии, тогда:
x - (n+1)-ый член,
5 - (n+2)-ой член,
-2,5 - (n+3)-ий член.
bn+3=bn+2q
-2,5=5*q
q=-2,5/5=-1/2
По этой же формуле:
bn+1=bnq
x=20*q=20*(-1/2)=-10
Ответ: -10
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условиями: b1=64, bn+1=(1/2)bn. Найдите b7.
Геометрическая прогрессия задана условиями b1=, bn+1=-3bn. Найдите b7.
Дана арифметическая прогрессия (an), разность которой равна 6,8, a1=-3. Найдите a14.
Дана арифметическая прогрессия (an), разность которой равна 1,6, a1=-1. Найдите a11.
В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.
Комментарии: