ОГЭ, Математика. Числовые последовательности: Задача №1D48D6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №1D48D6

Задача №176 из 182
Условие задачи:

Дана арифметическая прогрессия (an), разность которой равна 0,6 и a1=6,2. Найдите сумму первых шести её членов.

Решение задачи:

Чтобы найти сумму арифметической прогрессии есть формулы.
Воспользуемся второй формулой:

Тогда:

Ответ: 46,2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D24F37

Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.



Задача №3C4E15

Выписано несколько последовательных членов геометрической прогрессии:
…; 1,5; x; 24; -96; …
Найдите x.



Задача №FD3153

Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.



Задача №EFDA6B

Арифметическая прогрессия задана условием an=3,8-5,7n. Найдите a6.



Задача №C8BBF7

В первом ряду кинозала 24 места, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в восьмом ряду?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика