Дана арифметическая прогрессия (an), в которой a10=-2,4, a25=-0,9.
Найдите разность прогрессии.
Любой член
арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии:
an=a1+(n-1)d
Тогда десятый член можно представить в следующем виде:
a10=a1+(10-1)d
-2,4=a1+9d
-2,4-9d=a1 (1) - это уравнение нам понадобится позже.
Двадцать пятый член можно представить так:
a25=a1+(25-1)d
-0,9=a1+24d
Подставляем значение a1 из уравнения (1):
-0,9=-2,4-9d+24d
-0,9+2,4=15d
1,5=15d
d=1,5/15=-0,1
Ответ: 0,1
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условием bn=-175(-1/5)n. Найдите b4.
Дана арифметическая прогрессия (an), для которой a6=-7,8, a19=-10,4. Найдите разность прогрессии.
Дана арифметическая прогрессия (an), разность которой равна 2,5, a1=8,7. Найдите a9.
Последовательность задана формулой an=70/(n+1). Сколько членов этой последовательности больше 6?
Дана арифметическая прогрессия: -7; -5; -3; … Найдите сумму первых пятидесяти её членов.
Комментарии: