Какое наименьшее число последовательных натуральных чисел, начиная с 1, нужно сложить, чтобы получившаяся сумма была больше 378?
Последовательные натуральные числа - это 1, 2, 3, и т.д.
Такая последовательность является
арифметической прогрессией с a1=1 и разностью d=1.
Нам нужно найти такое наименьшее n, что сумма первых n членов (Sn) будет больше 378.
Воспользуемся формулой суммы:
(1+n)n>756
n+n2>756
n2+n-756>0
Чтобы решить это неравенство, найдем корни соответствующего
квадратного уравнения через
дискриминант:
n2+n-756=0
D=12-4*1*(-756)=1+3024=3025
n1=(-1+55)/(2*1)=54/2=27
n1=(-1-55)/(2*1)=-56/2=-28
График квадратичной функции - парабола, так как коэффициен "а" равен 1, т.е. положителен, то ветви направлены вверх.
n2+n-756 будет больше нуля на диапазонах, где график выше оси Х, в данном случае:
n∈(-∞;-28)∪(27;+∞)
Для ответа надо выбрать наименьший n, но n, естественно, должент быть натульным, т.е. целым и положительным.
27 - не подходит, так как это число исключено из диапазона, следовательно n=28.
Ответ: 28
Поделитесь решением
Присоединяйтесь к нам...
Мощность постоянного тока (в ваттах) вычисляется по формуле P=I2R, где I — сила тока (в амперах), R — сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R (в омах), если мощность составляет 283,5 Вт, а сила тока равна 4,5 А.
Центростремительное ускорение при движении по окружности (в м/с2) можно вычислить по формуле a=ω2R, где ω — угловая скорость (в с-1), а R — радиус окружности. Пользуясь этой формулой, найдите расстояние R (в метрах), если угловая скорость равна 4 с-1, а центростремительное ускорение равно 96 м/с2.
Площадь четырёхугольника можно вычислить по формуле , где d1 и d2 — длины диагоналей четырёхугольника, α — угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d2, если d1=7, sinα=6/11, a S=21.
Решите уравнение (x+2)3=16(x+2).
Найдите значение выражения
Комментарии: