В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Окружность может быть вписана в четырехугольник, когда выполняется
условие:
AB+CD=BC+AD
AB=CD=x (по
свойству параллелограмма)
BC=AD=y (по
свойству параллелограмма)
Получаем:
x+x=y+y
2x=2y
x=y, т.е. все стороны нашего
параллелограмма равны, следовательно это
ромб.
Периметр
ромба равен:
P=6*4=24
Ответ: 24
Поделитесь решением
Присоединяйтесь к нам...
Сторона квадрата равна 4√2. Найдите радиус окружности, описанной около этого квадрата.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 1 и 7.
Периметр треугольника равен 33, одна из сторон равна 7, а радиус вписанной в него окружности равен 2. Найдите площадь этого треугольника.
Сторона ромба равна 60, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
Комментарии:
(2016-05-23 21:05:51) Администратор: Елена, сторона ромба, по условию, равна 6, поэтому 4*6, ну или 6*4. Чтобы не было разночтений, я поменял порядок множителей.
(2016-05-23 11:01:33) Елена: Почему периметр ромба равен 4*6? Должно быть 4*4.