ОГЭ, Математика. Геометрия: Задача №53152C | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №53152C

Задача №554 из 1087
Условие задачи:

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.

Решение задачи:

По свойству касательной:
OF - радиус окружности, т.к. OF проходит через центр окружности и перпендикулярен касательной AC.
AG=AF
BG=BH=x
CH=CF=y
AF найдем по теореме Пифагора:
AO2=AF2+OF2
52=AF2+32
25=AF2+9
AF2=16
AF=4=AG
EH - высота параллелограмма. EH=OH+OE=3+4=7
SABC=p*r, где p - полупериметр, r - радиус вписанной окружности.
p=(AB+BC+AC)/2.
Рассмотрим треугольники ABC и CDA.
AD=BC и AB=CD (по свойству параллелограмма).
AC - общая сторона.
Следовательно, по третьему признаку равенства треугольников, данные треугольники равны.
Тогда: SABCD=2*SABC
И в тоже время SABCD=EH*AD.
Приравняем полученные равенства:
p*r=EH*AD/2
(AB+BC+AC)/2*r=EH*BC/2
(AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC)
(4+x+x+y+y+4)*3=7*(x+y)
(8+2x+2y)*3=7*(x+y)
24+3(2x+2y)=7*(x+y)
24+6(x+y)=7*(x+y)
24=x+y
x+y=24=BC=AD
SABCD=EH*AD=7*24=168
Ответ: SABCD=168

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №04B0F5

В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=84 и BC=BM. Найдите AH.



Задача №1B7017

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.



Задача №F9D5C2

От столба высотой 12 м к дому натянут провод, который крепится на высоте 3 м от земли (см. рисунок). Расстояние от дома до столба 12 м. Вычислите длину провода.



Задача №A096E7

Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 3. Найдите радиус окружности.



Задача №274F75

Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали любого прямоугольника делят его на 4 равных треугольника.
3) Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства параллелограмма:
1) Противоположные стороны параллелограмма равны.
2) Противоположные углы параллелограмма равны.
3) Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
4) Сумма углов, прилежащих к одной стороне, равна 180°
5) Точка пересечения диагоналей является центром симметрии параллелограмма.
6) Сумма всех углов равна 360°(сумма углов многоугольника = 180( n - 2), где n кол-во углов).
7) Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d12+d22 = 2*(a2 + b2).
Признаки параллелограмма.
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:
1) Противоположные стороны попарно равны: AB = CD, AD = BC.
2) Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
3) Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
4) Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180°, ∠B + ∠C = 180°, ∠C + ∠D = 180°, ∠D + ∠A = 180°.
5) Противоположные стороны равны и параллельны: AB = CD, AB || CD.
6) Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
7) Сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма: AC2+BD2 = AB2+BC2+CD2+DA2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика