Площадь параллелограмма ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
Проведем высоту
параллелограмма CO, как показано на рисунке. Площадь параллелограмма равна произведению стороны на высоту
параллелограмма.
Sparal=AB*h=30
А площадь
трапеции равна произведению полусуммы оснований на высоту.
ED=DC/2 (по условию задачи).
DC=AB (по
свойству параллелограмма).
Следовательно ED=AB/2.
Тогда:
Ответ: 22,5
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.
Точка О – центр окружности, /BOC=50° (см. рисунок). Найдите величину угла BAC (в градусах).
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.
Стороны AC, AB, BC треугольника ABC равны 2√
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии:
(2017-10-10 09:50:50) Администратор: Илья, AB+AB/2=(2AB)/2+AB/2=(3AB)/2
(2017-10-09 09:37:18) Илья: Я не понял только одно, где вы взяли цифру \"3\" когда подставляли в формулу?
(2017-02-08 23:51:36) Администратор: Алена, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-02-08 12:33:24) Алена: В параллелограме ABCD AE биссектриса угла А. Стороны параллелограмма АВ и ВС относятся как 4/9. АЕ пересекают диагональ ВД в точке К. Найти отношение ВК/КД