Площадь параллелограмма
ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
Проведем высоту
параллелограмма CO, как показано на рисунке. Площадь параллелограмма равна произведению стороны на высоту
параллелограмма.
Sparal=AB*h=30
А площадь
трапеции равна произведению полусуммы оснований на высоту.

ED=DC/2 (по условию задачи).
DC=AB (по
свойству параллелограмма).
Следовательно ED=AB/2.
Тогда:


Ответ: 22,5
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, вписанной в трапецию, равен 32. Найдите высоту этой трапеции.
В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.
Найдите площадь трапеции, изображённой на рисунке.
В трапецию, сумма длин боковых сторон которой равна 18, вписана окружность. Найдите длину средней линии трапеции.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если
угол BAC равен 74°. Ответ дайте в градусах.
Комментарии:
(2017-10-10 09:50:50) Администратор: Илья, AB+AB/2=(2AB)/2+AB/2=(3AB)/2
(2017-10-09 09:37:18) Илья: Я не понял только одно, где вы взяли цифру \"3\" когда подставляли в формулу?
(2017-02-08 23:51:36) Администратор: Алена, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-02-08 12:33:24) Алена: В параллелограме ABCD AE биссектриса угла А. Стороны параллелограмма АВ и ВС относятся как 4/9. АЕ пересекают диагональ ВД в точке К. Найти отношение ВК/КД