Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=13, CD=22. Найдите AD.
Так как в трапецию вписана
окружность, то:
AD+BC=AВ+CD (по четвертому свойству трапеции).
AD+13=14+22
AD=14+22-13=23
Ответ: 23
Поделитесь решением
Присоединяйтесь к нам...
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=64°. Ответ дайте в градусах.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=8, DK=24, BC=18. Найдите AD.
В треугольнике ABC известно, что AC=54, BM — медиана, BM=43. Найдите AM.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Комментарии:
(2019-12-25 08:18:36) С.: трапеция абсд с основаниями ад и бс вписана в окружность. так,что ад-диаметр окружности .Диагональ трапеции равна 10 см,а её площадь - 25см2.