Какое из следующих утверждений верно?
1) Один из двух смежных углов острый, а другой тупой.
2) Площадь квадрата равна произведению двух его смежных сторон.
3) Все хорды одной окружности равны между собой.
Рассмотрим каждое утверждение:
1) "Один из двух
смежных углов острый, а другой тупой".
Острый угол - градусная мера от 0 до 90 градусов.
Прямой угол - градусная мера 90 градусов.
Тупой угол - градусная мера больше 90 градусов.
Так как сумма смежных углов равна 180°, то очевидно: если один из смежных углов больше 90°, то второй угол меньше 90°. Но если один из углов прямой (т.е. не острый и не тупой), то смежный ему угол тоже прямой. Следовательно, это утверждение неверно.
2) "Площадь
квадрата равна произведению двух его смежных сторон", это утверждение верно. Думаю, комментариев не требуется.
3) "Все хорды одной окружности равны между собой". Если рассмотреть первое свойство хорды, то становится понятно, что длина хорды зависит от ее удаленности от центра окружности, при чем диаметр - самая большая хорда. Поэтому это утверждение неверно.
Ответ: 2)
Поделитесь решением
Присоединяйтесь к нам...
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, BC=32. Найдите AK.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:7, KM=12.
В треугольнике ABC известно, что ∠BAC=62°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 28.
Центральный угол AOB, равный
60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.
Комментарии:
(2015-12-12 17:52:00) Администратор: Галина, в утверждении не говорится, что один из углов обязательно острый. Перефразировать можно так: есть два смежных угла, утверждается, что один из них будет острый, а другой тупой. Я опровергаю это утверждение, приводя пример, когда оба угла прямые.
(2015-12-11 08:44:21) Галина: Почему в 1 утверждении, острый угол становится прямым?