ОГЭ, Математика. Геометрия: Задача №53F638 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №53F638

Задача №246 из 1087
Условие задачи:

Укажите номера верных утверждений.
1) Любой квадрат является ромбом.
2) Против равных сторон треугольника лежат равные углы.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.

Решение задачи:

Рассмотрим каждое утверждение:
1) "Любой квадрат является ромбом", это утверждение верно, т.к. квадрат удовлетворяет определению ромба.
2) "Против равных сторон треугольника лежат равные углы", это утверждение верно (по свойству равнобедренного и равностороннего треугольников).
3) "Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности", это утверждение верно. Эта система (точка и окружность) имеет ось симметрии - прямая проведенная через данную точку и центр окружности. Соответственно, если можно провести одну касательную, то можно провести и вторую, симметричную первой.
Ответ: 1), 2) и 3)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №097863

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=38°. Найдите угол NMB. Ответ дайте в градусах.



Задача №0A7C3E

Боковая сторона равнобедренного треугольника равна 25, а основание равно 48. Найдите площадь этого треугольника.



Задача №32C056

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.



Задача №656C84

Площадь прямоугольного треугольника равна 9683/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №56A917

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 164. Найдите стороны треугольника ABC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Окружность — геометрическое место точек плоскости, удалённых от некоторой точки — центра окружности — на заданное расстояние, называемое радиусом окружности. Окружность нулевого радиуса (вырожденная окружность) является точкой, иногда этот случай исключается из определения.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика