ОГЭ, Математика. Геометрия: Задача №1BB912 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1BB912

Задача №673 из 1087
Условие задачи:

В трапецию, сумма длин боковых сторон которой равна 18, вписана окружность. Найдите длину средней линии трапеции.

Решение задачи:

По второму свойству четырехугольника: AB+CD=BC+AD=18
По определению средней линии трапеции: m=(BC+AD)/2=18/2=9
Ответ: m=9

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №02270F

Найдите площадь треугольника, изображённого на рисунке.



Задача №0B3CDE

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.



Задача №9EA778

Точка О – центр окружности, /BAC=40° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №D5BFDE

От столба высотой 9 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 12 м. Вычислите длину провода.



Задача №4C6980

На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,6 м, если длина его тени равна 8 м, высота фонаря 5 м?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанная в четырехугольник окружность.
1)Описанный четырёхугольник, если у него нет самопересечений, как на рисунке, («простой»), должен быть выпуклым.
2) В выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны:
3) Если в четырёхугольник вписана окружность, то площадь такого четырёхугольника можно вычислить по формуле:
4) Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности лежат на одной прямой (теорема Ньютона). На ней же лежит середина отрезка с концами в точках пересечения противоположных сторон четырёхугольника. Эта прямая называется прямой Гаусса. Центр вписанной в четырёхугольник окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и точках пересечения противоположных сторон (теорема Брокара).
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика