ОГЭ, Математика. Геометрия: Задача №D93BBC | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вокруг треугольника описана окружность.
Тогда удобней всего воспользоваться теоремой синусов:


Подставляем значения:

По таблице синусов:

Ответ: 22

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D61C68

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=18, CM=21. Найдите OM.



Задача №48FE5E

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АEB и BDC тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №FE43C5

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=69°. Найдите угол NMB. Ответ дайте в градусах.



Задача №DAF765

Высота AH ромба ABCD делит сторону CD на отрезки DH=8 и CH=2. Найдите высоту ромба.



Задача №5E3594

Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.

Комментарии:


(2023-04-06 11:32:09) ира: задача №39Е079

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанная окружность
— окружность, касающаяся всех трёх сторон треугольника. Она единственна. Центр вписанной окружности называется инцентром.

Описанная окружность
— окружность, проходящая через все три вершины треугольника. Описанная окружность также единственна.

Вневписанная окружность
— окружность, касающаяся одной стороны треугольника и продолжения двух других сторон. Таких окружностей в треугольнике три. Их радикальный центр — центр вписанной окружности срединного треугольника, называемый точкой Шпикера.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика