Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=177°. Найдите величину угла BOC. Ответ дайте в градусах.
Центр
описанной окружности располагается на пересечении
серединных перпендикуляров треугольника. Так как треугольник
равнобедренный, то
биссектриса и
серединный перпендикуляр, проведенные к основанию, совпадают.
Следовательно, BO -
биссектриса угла ABC.
Тогда: ∠CBO=∠ABC/2=177°/2=88,5°
Треугольник OBC -
равнобедренный, так как OB и OC - радиусы окружности и следовательно равны.
По
свойству равнобедренного треугольника:
∠CBO=∠BCO=88,5°
По
теореме о сумме углов треугольника:
180°=∠CBO+∠BCO+∠BOC
180°=88,5°+88,5°+∠BOC
∠BOC=3°
Ответ: 3
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
В окружности с центром в точке O отрезки AC и BD — диаметры. Угол AOD равен 50°. Найдите угол ACB. Ответ дайте в градусах.
Найдите площадь трапеции, изображённой на рисунке.
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.
В трапеции
ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Комментарии:
(2017-03-06 23:01:34) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-03-04 19:40:30) : На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 32°. Найдите угол NMB. Ответ дайте в градусах.