Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.
Рассмотрим треугольник BDH.
Данный треугольник
прямоугольный, следовательно можно применить
теорему Пифагора:
BD2=HD2+BH2
532=282+BH2
2809=784+BH2
BH2=2025
BH=45
Найдем площадь
параллелограмма:
S=AD*BH=(AH+HD)*BH=(1+28)*45=1305
Ответ: 1305
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CKD.
Площадь равнобедренного треугольника равна 196√
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Площадь прямоугольного треугольника равна 18√
Найдите площадь треугольника, изображённого на рисунке.
Комментарии: