Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Площадь
параллелограмма равна произведению высоты на сторону параллелограмма. Sпараллелограмма=BH*AD
Найдем высоту. По
теореме Пифагора запишем:
BD2=HD2+BH2
852=752+BH2
7225=5625+BH2
BH2=1600
BH=40
Sпараллелограмма=BH*AD=BH*(AH+HD)=40*(6+75)=40*81=3240
Ответ: Sпараллелограмма=3240
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь треугольника, изображённого на рисунке.
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 32°. Найдите угол C этой трапеции. Ответ дайте в градусах.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=8, DK=24, BC=18. Найдите AD.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Комментарии: