В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём BF = DM, BE = DK. Докажите, что EFKM — параллелограмм.
1) Рассмотрим треугольники EBF и KDM.
BF=DM (по условию задачи)
/B=/D (по
свойству параллелограмма)
BE=DK (по условию задачи).
Следовательно, треугольники EBF и KDM равны (по первому признаку).
Поэтому ЕF=KM.
2) Рассмотрим треугольники AEM и FCK.
Т.к. AB=CD и AD=BC (по
свойству параллелограмма), а BF=DM и BE=DK (по условию задачи), то AE=CK и AM=CF.
/A=/C (по
свойству параллелограмма).
Следовательно, треугольники AEM и FCK (по первому признаку). А это значит, что EM=FK.
Из пунктов 1 и 2 (равенство сторон) следует, что EFKM —
параллелограмм (по
свойству параллелограмма).
Поделитесь решением
Присоединяйтесь к нам...
Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.
Укажите номера верных утверждений.
1) Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая высота равнобедренного треугольника является его биссектрисой.
Найдите площадь треугольника, изображённого на рисунке.
На клетчатой бумаге с размером клетки 1x1 изображён параллелограмм. Найдите его площадь.
В треугольнике ABC угол C равен 90°, cosB=2/5, AB=10. Найдите BC.
Комментарии: