ОГЭ, Математика. Геометрия: Задача №B668D2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №B668D2

Задача №291 из 1087
Условие задачи:

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём BF = DM, BE = DK. Докажите, что EFKM — параллелограмм.

Решение задачи:

1) Рассмотрим треугольники EBF и KDM.
BF=DM (по условию задачи)
/B=/D (по свойству параллелограмма)
BE=DK (по условию задачи).
Следовательно, треугольники EBF и KDM равны (по первому признаку).
Поэтому ЕF=KM.
2) Рассмотрим треугольники AEM и FCK.
Т.к. AB=CD и AD=BC (по свойству параллелограмма), а BF=DM и BE=DK (по условию задачи), то AE=CK и AM=CF.
/A=/C (по свойству параллелограмма).
Следовательно, треугольники AEM и FCK (по первому признаку). А это значит, что EM=FK.
Из пунктов 1 и 2 (равенство сторон) следует, что EFKM — параллелограмм (по свойству параллелограмма).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №2B00D0

Медиана равностороннего треугольника равна 13√3. Найдите его сторону.



Задача №0B70B9

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 208. Найдите стороны треугольника ABC.



Задача №97C312

Хорды AC и BD окружности пересекаются в точке P, BP=12, CP=15, DP=25. Найдите AP.



Задача №4CDB9E

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=41°. Найдите угол NMB. Ответ дайте в градусах.



Задача №34AF72

Найдите тангенс угла AOB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Параллелограмм —
это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

AB||CD и BC||AD
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика