Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.
Пусть AD -
биссектриса, описанная в условии.
BC - сторона, равная 30.
Рассмотрим треугольник ADC.
Для этого треугольника CO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AC/CD=17/10
10*AC=17*CD
Рассмотрим треугольник ABD.
Для этого треугольника BO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AB/BD=17/10
10*AB=17*BD
Складываем полученные равенства:
10*AC+10*AB=17*CD+17*BD
10(AC+AB)=17(CD+BD), CD+BD=BC=30
10(AC+AB)=17*30
AC+AB=17*3=51
PABC=AC+AB+BC=51+30=81
Ответ: 81
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника.
Лестница соединяет точки A и B и состоит из 30 ступеней. Высота каждой ступени равна 13 см, а длина – 84 см. Найдите расстояние между точками A и B (в метрах).
Найдите площадь треугольника, изображённого на рисунке.
Найдите тангенс угла AOB, изображённого на рисунке.
Комментарии: