ОГЭ, Математика. Геометрия: Задача №72DA6E | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №72DA6E

Задача №824 из 1087
Условие задачи:

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.

Решение задачи:

Пусть AD - биссектриса, описанная в условии.
BC - сторона, равная 30.
Рассмотрим треугольник ADC.
Для этого треугольника CO - биссектриса,
По свойству биссектрисы:
AO/OD=AC/CD=17/10
10*AC=17*CD
Рассмотрим треугольник ABD.
Для этого треугольника BO - биссектриса,
По свойству биссектрисы:
AO/OD=AB/BD=17/10
10*AB=17*BD
Складываем полученные равенства:
10*AC+10*AB=17*CD+17*BD
10(AC+AB)=17(CD+BD), CD+BD=BC=30
10(AC+AB)=17*30
AC+AB=17*3=51
PABC=AC+AB+BC=51+30=81
Ответ: 81

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №AEC23E

В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.



Задача №04D00B

В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника.



Задача №2C3437

Лестница соединяет точки A и B и состоит из 30 ступеней. Высота каждой ступени равна 13 см, а длина – 84 см. Найдите расстояние между точками A и B (в метрах).



Задача №4A5C29

Найдите площадь треугольника, изображённого на рисунке.



Задача №201054

Найдите тангенс угла AOB, изображённого на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства биссектрисы.
1) Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
2) Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
3) Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
4) Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
5) Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
6) Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса).
7) Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, причём даже при наличии трисектора.
8) В равнобедренном треугольнике биссектриса угла, противоположного основанию треугольника, является медианой и высотой.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика